skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tanhayi_Ahari, Mostafa"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In superconductors that lack inversion symmetry, a supercurrent flow can lead to nondissipative magne- toelectric effects. We offer a straightforward formalism to obtain a supercurrent-induced magnetization in superconductors with broken inversion symmetry, which may have orbital, layer, sublattice, or valley degrees of freedom—multiband noncentrosymmetric superconductors. The nondissipative magnetoelectric effect may find applications in fabricating quantum computation platforms or efficient superconducting spintronic devices. We explore how the current-induced magnetization can be employed to create and manipulate Majorana zero modes in a simple hybrid structure. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025